Sumas De Riemann

Sumas De Riemann

En las matemáticas , una suma de Riemann es una suma de un gran número de pequeñas particiones de una región. Se puede utilizar para definir la integración de la operación. El método fue nombrado por el matemático alemán Bernhard Riemann .

Vamos f : D → R una función definida en un subconjunto, D , de la recta real, R . Deja que yo = [ a , b ] es un intervalo cerrado contenido en D , y dejar

ser una partición de I , donde

La suma de Riemann de f sobre I con la partición P se define como

La elección de x_i ^ *en el intervalo [X_ {i-1}, x_i]es arbitraria.

Ejemplo: opciones específicas de x_i ^ *darnos diferentes tipos de sumas de Riemann:

Si x_i ^ * = x_ {i-1}para todos los i , entonces S se llama suma de Riemann izquierda . Si x_i ^ * = x_ipara todos los i , entonces S se llama suma de Riemann derecha . Si x_i ^ * = \ tfrac {1} {2} (x_i + x_ {i-1})para todos los i , entonces S se llama una suma de Riemann medio . El promedio de izquierda y derecha de la suma de Riemann es la suma trapezoidal . Si se da que

donde v_ies el supremo de f sobre [X_ {i-1}, x_i], entonces S se define como una suma de Riemann superior . Del mismo modo, si v_ies el ínfimo de f más [X_ {i-1}, x_i], entonces S es una menor suma de Riemann .

Cualquier suma de Riemann en una partición dada (es decir, para cualquier elección de x_i ^ *entre x_ {i-1}y x_i) está contenida entre la parte inferior y las sumas de Riemann superiores. Una función se define para ser integrable Riemann si los inferior y superior sumas de Riemann se vuelven cada vez más cerca como la partición consigue más fino y más fino. Este hecho también se puede utilizar para la integración numérica .

Obtenido de “ http://en.wikipedia.org/w/index.php?title=Riemann_sum&oldid=552600263


Mis sitios nuevos:
Emprendedores
Politica de Privacidad