Medicion Aproximada De Figuras Amorfas

Medicion Aproximada De Figuras Amorfas

Medida Aproximada de Figuras Amorfas

Calcular las áreas de una figura regular es una tarea muy fácil, por lo cual la sustitución de la longitud, anchura u otras cantidades en la fórmula produciría el resultado.

Sin embargo, la estimación del área bajo la curva de las funciones no es tan sencilla ya que existen figuras amorfas y no fórmulas directas para estimaresta área.

La integración puede ser utilizada fructíferamente en una situación semejante.

Existen cuatro gráficas posibles para las cuales el área necesita ser evaluada.

Estas son: 1 Cuando el área está limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b.

El gráfico de la función se muestra a continuación,

Para estimar el área de tal figura, considereque el área bajo la curva estácompuesto por un gran número de delgadas tiras verticales.

Suponiendo que hay una tira arbitraria y para la altura y una dxpara la anchura. El área de esta tira elemental sería, dA = y dx donde y = f(x)

El área total A de la región entre el eje x, la ordenada x = a y x = b y la curva y = f (x) será la sumatoria de las áreas de todas las tiras elementales en toda la región o la zona limitada.

Esto produce la fórmula, A = dA = y dx = f(x) dx La integral anterior puede ser evaluada mediante poner la función en su lugar e integrándola.

2 La segunda situación es cuando el área está delimitada por la curva x = g(y), el eje y, y las ordenadas y = y1 y y2 = y. La gráfica de la función se muestra a continuación,

Asuma que el área bajo la curva está compuesta de un gran número de tiras delgadas horizontales. Sea una tira arbitraria dypara la altura y xpara la longitud. El área de esta tira elemental sería, dA = x dy donde x = g(y)

El área total A de la región entre el eje x, la ordenada y = y1 y y2 = y, y la curva x = g(y) será la sumatoria de las áreas de todas las tiras elementales en toda la región o el área limitada. Esto produce la fórmula, A = dA = x dy = g(y) dy

3 Se presenta una tercera situación cuando la curva en cuestión se encuentra por debajo del eje x, entonces f(x) es menor que cero desde x = a hasta x = b, el área limitada por la curva y = f(x) y las ordenadas x = a y x = b, y el eje x es negativo.

Pero el valor numérico del área debe ser tomado en consideración,entonces

A = | f(x) dx|

4 Una última posibilidad sería que una parte de la curva esté por encima del eje x y otra parte esté por debajo del eje x. Sea A1 el área debajo del eje x y A2 el área por encimadel eje x. Por lo tanto, el área limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b serán,

A = |A1| + A2

Tomemos ahora un ejemplo para entender la solución de tales problemas,

Encuentre el área de la región limitada por la curva y2 = x y las rectas x = 1, x = 4 y por el eje x.

La curva y2 = x es una parábola con su vértice en el origen. El eje de x es la línea de simetría la cual es el eje de la parábola. El gráfico de la función dada sería,

El área de la región limitada es,

A = y dx = dx = 2/3 [x3/2]14 = 2/3 [43/2 – 13/2] = 2/3 [8 – 1] = 14/3

Saludos y suerte prof lauro soto


Mis sitios nuevos:
Radio MiTecnologico Emprendedores
Politica de Privacidad