Longitud De Curvas

Longitud De Curvas

Longitud de la Curva
 Determinar la longitud de una línea recta es una tarea relativamente fácil, pero si tenemos que determinar la longitud de una curva entonces necesitamos la ayuda de la integración. 

Es conocida por nombres como integral de línea, integral curvilínea, integral de caminos o integral de contorno.

Aquí el propósito de la integración es la evaluación de una función determinada a lo largo de la curva de la función.

Ambos, campos escalares o campos vectoriales se pueden integrar de esta manera.

La integración completa produciría la suma del valor de cada campo en cada punto que se encuentre sobre la curva de la función dada, lo cual es ponderado por el valor de cualquier función.

Esta suele ser una función escalar.

Considere una función continua,sea y = f(x) tal que la función y su derivada son continuas en un intervalo cerrado [p, q].

Para la estimación de la longitud del arco de dicha función, considere la pequeña parte ds de la curva correspondiente.

Por el Teorema dePitágoras, obtenemos

ds2 = dy2 + dx2

Llevando dx2 al otro lado

ds2 / dx2 = 1 + dy2 / dx2

ds2 / dx2 = 1 + (dy / dx) 2

ds / dx =

ds = dx

Ahora tomando la antiderivada de la ecuación anterior, obtenemos

Puede existir el caso, cuando la curva es definida en su forma paramétrica, es decir, x = x (t) y y = y (t).

La fórmula integral correspondiente para la solución de tales formas es la siguiente:

El tercer caso es cuando la ecuación de la función se describe en forma polar, esto es, r = f ( ), en ese caso, la longitud del arco se puede encontrar por:

Existe otra manera de despejar las fórmulas correspondientes para el cálculo de la longitud del arco. De acuerdo con esta, suponga que longitud del arco de la funciónf(x) será determinado.

Para encontrar la longitud del arco (denotadocomo S) en medio de los puntos b y a, una serie de triángulo rectángulo se construye de manera que la hipotenusa del triángulo cubra el arco correspondiente cuya longitud será determinada. Para simplificar, la base del triángulo se consideraΔx tal que existe una y correspondiente para cada Δx.

Ahora según el teorema de Pitágoras, obtenemos

Longitud de la Hipotenusa =

La longitud total de todas las hipotenusas da el valor aproximado de S. Esto es,

Ahora, cuando el radicando es multiplicado por , obtenemos

Por tanto, la S puede ser modificada

Mientras menor sea el valor de Δx, más precisa será la aproximación. Tenemos S, cuando el límite de Δxse mueve hacia 0.Esto es,

Vamos a considerar un ejemplo en el que la ecuación de la curva se da como x = cos (a), y = sin(a), donde 0 ≤ a ≤ 2π.

Diferenciando x e y, obtenemos

dx / da = - sin (a) y dy / da = cos (a)

Ahora, elevando al cuadrado y sumando ambos lados

(dx / da)2 + (dy / da)2 = sin2 (a) + cos2 (a) = 1

Por tanto, S = 1 da

S = 2π.


Mis sitios nuevos:
Emprendedores
Politica de Privacidad