Integrales Indefinidas Con Cambio De Variable

Integrales Indefinidas Con Cambio De Variable

Integrales Indefinidas con Cambio de Variable

La integración mediante el cambio de variable o por sustitución se encuentra entre uno de los métodos de integración más poderosos.

Es conocido por todos que la integración es el proceso contrario de la diferenciación, en esta perspectiva la integración con cambio de variable es el proceso contrario de la diferenciación llevada a cabo a través de regla de la cadena.

La integración a través de la sustitución se realiza cuando el integrando dado es de la forma,

Es decir se nos provee una función primaria y el integrando es el producto de la derivada de esta función primaria y función de esta función primaria.

Sin embargo, no siempre es el caso que el integrandoseadado directamente en la forma que podamos aplicar directamente la regla de la sustitución, hay situaciones en las que primero tenemos que modificar el integrando dado de tal manera que podamos aplicar la fórmula de sustitución.

Los pasos para realizar el método de sustitución para las integrales indefinidas son los siguientes.

1 Identificar la función primaria g(x).

En caso que el integrando no pueda ser sustituido directamente realice una serie de multiplicaciones y divisiones o recurra a otros métodos para convertirloen la forma deseada.

2 Sustituya la función primaria g(x) por alguna variable, digamos a,

3 Esta diferenciación produciría

4 Sustituya estos valores en la expresión real para modificar el integrando como,

5 En caso de que la variable original todavía exista en el integrando, entonces sencillamenteusamos la definición de a desde el paso inicial para la variable real en términos de la nueva variable.

6 Finalmente integre este integrando.

7 Después de obtener la antiderivada de este integrando, sustituya la variable original en la antiderivada obtenida.

Puede parecer que los pasos para la realización de este método son los mismos tanto para la integración indefinida como para la definida, pero existe fina diferencia entre los dos que es esencialentender.

Primeramente en el caso de una integración definida una cosa importante a tener en cuenta es cambiar el límite superior, así como el límite inferior de integración.

Esto se hace porque se han sustituido las variables del integrando y por lo tanto los límites de integración tienen que ser redefinidos en consecuencia de los nuevos límites de integración.

En segundo lugar, en el caso de la integración indefinida, tenemos que volver a colocarde nuevola variable originalpara el integrando de manera que la solución final sea en términos de la variable real.

Mientras que para la integración definidaponemos al final los valores del límite superior e inferior en la expresión para obtener la respuesta numérica.

Observemos ahora un ejemplo ilustrativo para aclarar los conceptos.

	 18×5 (x3 – 5)4 dx

Sea a = (x3 – 5)4

da = 3×2 dx

dx = da/3×2

  18×5 (x3 – 5)4 da/ 3×2

  6×2 (x3 – 5)4 da

 6×2 a4 da

6(a +5) a4 da

(6a5 + 30 a4) da

a6 + 6a5 + c

(a + 6) a5 + c

(x3 – 5 + 1) (x3 – 5)5 + c

(x3 + 1) (x3 – 5)5 + c

En el ejemplo anterior fueron empleadas varias transformaciones para obtener la forma deseada del integrando.

De manera similar otros problemas pueden ser resueltos, sin embargo para cada problema puede ser necesaria una técnica distinta para obtener el integrando deseado.

Saludos y suerte prof lauro soto


Mis sitios nuevos:
Emprendedores
Politica de Privacidad