Aplicaciones Lenguajes Formales

Aplicaciones Lenguajes Formales

En matemáticas, lógica, y ciencias de la computación, un lenguaje formal es un lenguaje cuyos símbolos primitivos y reglas para unir esos símbolos están formalmente especificados.1 2 Al conjunto de los símbolos primitivos se le llama el alfabeto (o vocabulario) del lenguaje, y al conjunto de las reglas se lo llama la gramática formal (o sintaxis). A una cadena de símbolos formada de acuerdo a la gramática se la llama una fórmula bien formada (o palabra) del lenguaje. Estrictamente hablando, un lenguaje formal es idéntico al conjunto de todas sus fórmulas bien formadas. A diferencia de lo que ocurre con el alfabeto (que debe ser un conjunto finito) y con cada fórmula bien formada (que debe tener una longitud también finita), un lenguaje formal puede estar compuesto por un número infinito de fórmulas bien formadas.

Por ejemplo, un alfabeto podría ser el conjunto {a,b}, y una gramática podría definir a las fórmulas bien formadas como aquellas que tienen el mismo número de símbolos a que b. Entonces, algunas fórmulas bien formadas del lenguaje serían: ab, ba, abab, ababba, etc.; y el lenguaje formal sería el conjunto de todas esas fórmulas bien formadas.

Para algunos lenguajes formales existe una semántica formal que puede interpretar y dar significado a las fórmulas bien formadas del lenguaje. Sin embargo, una semántica formal no es condición necesaria para definir un lenguaje formal, y eso es una diferencia esencial con los lenguajes naturales.

EJEMPLOS DE LENGUAJES FORMALES

Un conjunto de todas las palabras sobre {a,b}. El conjunto {an : n es un número primo}. El conjunto de todos los programas sintácticamente válidos en un determinado lenguaje de programación. El conjunto de todas las fórmulas bien formadas en la lógica de primer orden

http://es.wikipedia.org/wiki/Lenguaje_formal


Mis sitios nuevos:
Emprendedores
Politica de Privacidad